Design and modeling of Faraday cages for substrate noise isolation
نویسندگان
چکیده
A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Evaluating Noise Coupling Issues in Mixed-Signal 3D ICs
Technology for 3D ICs is slowly becoming mainsteam such that integrating complete mixed digital-analog-RF systems is not only possible but almost unavoidable. Because of the close proximity of the different substrates switching noise from digital circuits are easily coupled through to severely degrade the performance of sensitive analog/RF circuits, as illustrated in Fig 1. In this paper, we ev...
متن کاملModeling and Simulation of Substrate Noise in Mixed-Signal Circuits Applied to a Special VCO
The mixed-signal circuits with both analog and digital blocks on a single chip have wide applications in communication and RF circuits. Integrating these two blocks can cause serious problems especially in applications requiring fast digital circuits and high performance analog blocks. Fast switching in digital blocks generates a noise which can be introduced to analog circuits by the common su...
متن کاملModeling of Substrate Noise Impact on a Single-Ended Cascode LNA in a Lightly Doped Substrate (RESEARCH NOTE)
Substrate noise generated by digital circuits on mixed-signal ICs can disturb the sensitiveanalog/RF circuits, such as Low Noise Amplifier (LNA), sharing the same substrate. This paperinvestigates the adverse impact of the substrate noise on a high frequency cascode LNA laid out on alightly doped substrate. By studying the major noise coupling mechanisms, a new and efficientmodeling method is p...
متن کاملSelf-aligned wafer-level integration technology with an embedded faraday cage for substrate crosstalk suppression
A modification to a recently developed chip/wafer integration technology has proven to be very effective in suppressing the substrate crosstalk for mixed signal systems. In this implementation, analog and digital chips are fabricated on separate dies, and then integrated on a single Si substrate using a Self-Aligned Wafer-Level Integration Technology. A truly grounded faraday-cage structure is ...
متن کاملDesign of High Gain, High Reverse Isolation and High Input Matched Narrowband LNA for GPS L1 Band Applications Using 0.18µm Technology
Design of Global Positioning System (GPS) receiver with a low noise amplifier (LNA) in the front end remains a major design requirement for the success of modern day navigation and communication system. Any LNA is expected to meet the requirements like its ability to add the least amount of noise while providing sufficient gain, perfect input and output matching, and high linearity. However, mo...
متن کامل